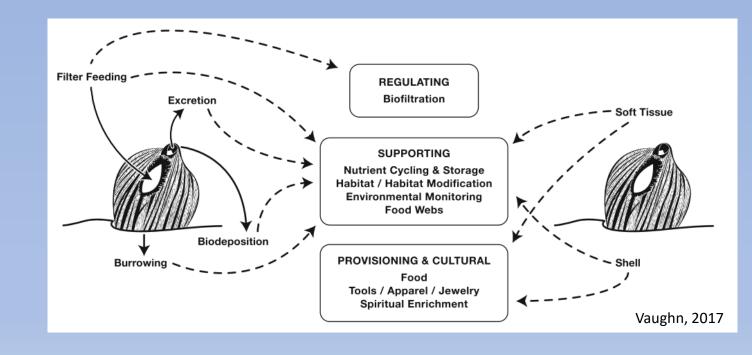
Leveraging existing data in the Riverine Environmental Flow Decision Support System (REFDSS) to estimate sediment retention services provided by freshwater mussels in the Upper Delaware River Basin

Zachary H. Ancona¹, Darius J. Semmens¹, Kenneth J. Bagstad¹, Christopher Huber², Heather S. Galbraith³ and Daniel E. Spooner³

¹U.S. Geological Survey, Geosciences and Environmental Change Science Center, Lakewood, CO
²U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO
³U.S. Geological Survey, Leetown Science Center, Northern Appalachian Research Branch, Wellsboro, PA

Project Details

- Sustaining Environmental Capital Initiative (SECI) pilot study
 - Develop/enhance science and research on ecosystem services in support of improving natural resource management
- Delaware River Basin pilot evaluates biofiltration, nutrient flux, storage and retention associated with freshwater mussel populations
 - Benefit estimate models for sediment retention allow us to quantify the economic value of ecosystem services provided by freshwater mussels
- Develop benchmark values for flow scenarios using river discharge fluctuation, mussel tissue dry mass, clearance rates, and sediment/nutrient loading for 11 sites along the Upper Delaware River

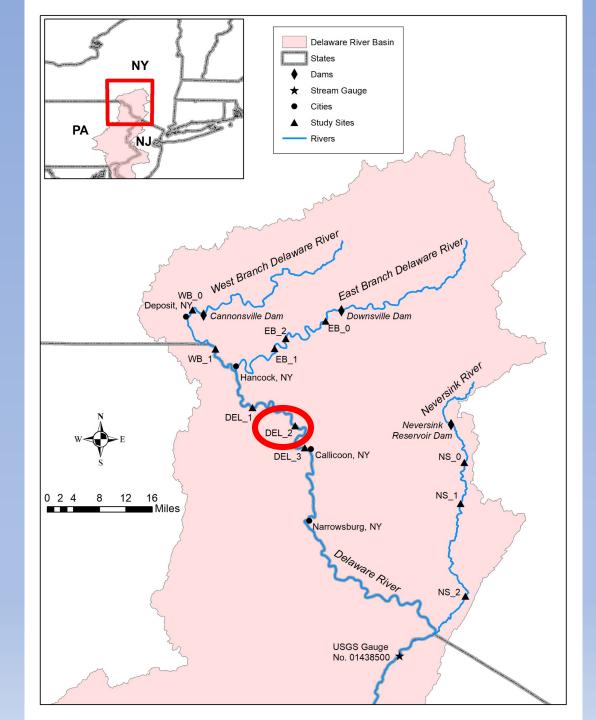

Ecosystem service benefits

- Regulating, Supporting, Provisioning and Cultural services
 - Study focuses mostly on regulating and supporting services

Biofiltration

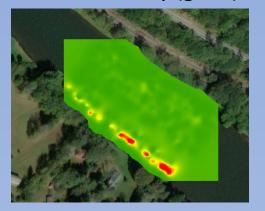
Nutrient Cycling & Storage

Economic Valuation



Study Area

- Drains total land area of 33,016km²
- Provides water for nearly 17 million people
 - Three dams constructed in the mid-1990s to control flow targets
- World class trout fishery managed by reservoir releases
- Data already collected at 11 sites for use in a preliminary EDSS looking at available habitat


Data Requirements

- Operational Analysis and Simulation System (OASIS)
 - Reservoir operations and flow-routing model
 - Daily flow-release values of depth & velocity for unique discharge values modeled as GeoTIFFs for 11 sites along the Upper Delaware River
- Mussel Density Field reporting combined with kriging interpolation
- Mussel Dry Tissue Mass Field reporting used to create averages
- Clearance Rate Literature review of various Bivalve species
- SPARROW Modeled sediment and nutrient loads by river segment (NHD)

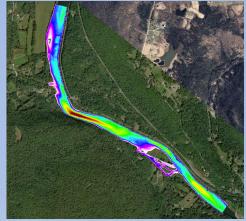
Processing Data – Mussel Clearance and River Discharge

Mussel Density (g/m²)

Mussel Dry Tissue Mass (g)

	Elliptio complanata dry tissue mass per individual mussel (g)			
max	2.02			
min	0.45			
range	1.57			
average	1.07			
median	1.01			
stdev	0.30			

Mussel Clearance Rate (L/hr/g)


	Clearance Rate (L hr1 g dry tissue mass -1)			
	All unionids	Elliptio complanata		
max	29.50	1.50		
min	0.04	0.30		
range	29.46	1.20		
average	4.36	0.92		
median	2.34	0.95		
stdev	5.65	0.33		

Mussel Clearance total divided by River Discharge total

Total water cleared by mussels (L/hr)

River Discharge (ft³/s)

Convert to L/hr

River Discharge (L/hr)

Total water passed over each pixel (L/hr)

Percentage of total water discharge able to be cleared by mussels present in study area

Analyzing Data – SPARROW and Benefit Estimates

- 2002 SPARROW model estimates Nitrogen and phosphorous loads from surrounding land cover/use
- Load estimates from SPARROW for manure and non-farm areas
- Soil conservation benefits for 11 practices in the Northeast region (Hansen and Ribaudo, 2008)
- Soil composition for concentration estimated at 2.32 lbs of Nitrogen and 1 lb of Phosphorus in a ton of eroded soil (USDA/NRCS)

SPARROW load estimates (kg/yr)

			, <i>O</i> ,	• •		
COMID	MANC_N	MANC_P	MANU_N	MANU_P	NOFARM_N	NOFARM_P
2617392	41.77	7.83	23.27	5.94	57.16	8.72
2617386	0	0	0	0	1.47	0.19
2616856	1.74	0.33	0.97	0.25	6.35	0.84
2617384	424.63	79.56	236.54	60.36	34.82	5.21
2617404	0	0	0	0	17.85	2.65
2616814	0	0	0	0	18.57	2.45
2616816	0	0	0	0	25.42	3.35
Total	468.14	87.72	260.78	66.55	161.64	23.41

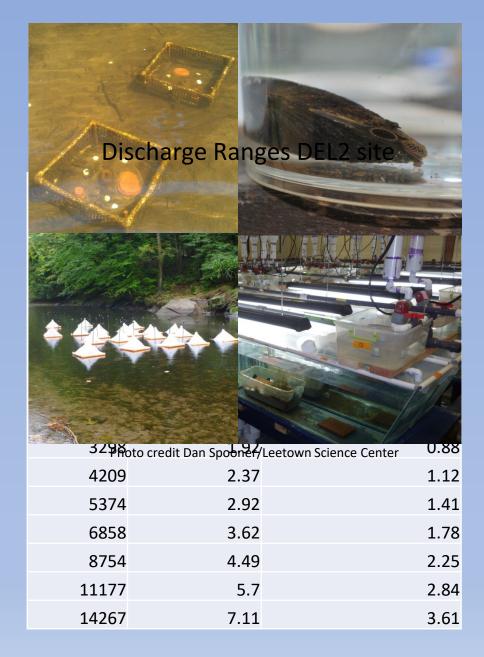
Sediment Retention (I.e. N. (P)

Benefit estimates (\$/ton)				
Irrigation ditches/canals	0.01			
Road drainage ditches	0.2			
Municipal water treatment	0.27			
Flood damages	0.77			
Marine fisheries	0.93			
Freshwater fisheries	0			
Marine recreational fishing	1.57			
Municipal/Industrial use	1.45			
Steam powerplants	0.66			
Soil productivity	1.27			
Dust cleaning	0			
Total water-related	7.12			
Total wind-related	1.27			

Results

Nutr Sent de le commandiment de le commandation

Flow Targets (ft³/s)	Value of Mussel Filtration	Societal Savings (\$/lb N and P)	Reduced N (lbs)	Reduced P (lbs)	Reduction of N (kg)	Reduction of P (kg)
466	\$131.45	0.63	173.5	34.6	78.7	15.7
596	\$135.11	0.63	178.4	35.5	80.9	16.1
762	\$141.24	0.63	186.3	37.3	84.5	16.9
974	\$146.67	0.63	193.6	38.6	87.8	17.5
1243	\$152.23	0.63	200.9	40.1	91.1	18.2
1585	\$129.56	0.63	170.9	34.2	77.5	15.5
2023	\$120.65	0.63	159.2	31.8	72.2	14.4
2577	\$122.04	0.63	161.0	32.2	73.0	14.6
3298	\$123.24	0.63	162.7	32.4	73.8	14.7
4209	\$123.93	0.63	163.6	32.6	74.2	14.8
5374	\$123.93	0.63	163.6	32.6	74.2	14.8
6858	\$124.94	0.63	164.9	32.9	74.8	14.9
8754	\$125.64	0.63	165.8	33.1	75.2	15.0
11177	\$123.68	0.63	163.2	32.6	74.0	14.8
14267	\$124.69	0.63	164.5	32.9	74.6	14.9



Discussion

- Optimydotisesizesefsædnorsselfiltrasenatifficulthespitimetel flowsizegets would be for mussel filtration
 - Substrate
 - Lab testing
 - Field monitoring

Mussel Field Observations

Observations	Sites	Mean velocity (ft³/s)
all mussels	149	0.93
14 mussels	1	1
11 mussels	1	0.2
7 mussels	1	0.8
6 mussels	1	0.3
5 mussels	8	0.7
4 mussels	5	0.72
3 mussels	12	0.84
2 mussels	45	0.93
1 mussel	75	1.01

Next Steps...

- Expand analysis to include 10 other sites on the East and West Branch of the Delaware and Neversink Rivers
- Confirm filtration efficiencies for mussels under various flow regimes
- Utilize dynamic SPARROW modeling (when available) to estimate current sediment and nutrient loads
- Incorporate datasets as they come available to improve filtration/mussel presence analysis
 - Substrate and Temperature datasets to improve mussel presence interpolation
 - Mussel Size and Weight for improved filtration estimates
- Examine how information gained from this analysis can be transferred to less pristine river such as the adjacent Susquehanna

Thank you all for attending! Questions?

Contact Information

Zach Ancona zancona@usgs.gov (303) 236-1886

